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Whole-cell modeling 
Whole-cell models predict cell behaviors by modeling all molecular components and their interactions [Karr 
2015, Macklin 2014, Covert 2013, Tomita 2001]. Recently, we and other developed the first whole-cell model 
[Karr 2012]. The model represents the functionality of all 409 characterized genes and 725 metabolites 
throughout one life cycle of the reduced bacterium Mycoplasma genitalium. This model was validated against a 
broad range of data and provided insights into many previously unobserved cellular behaviors. 
Simulating the behavior of a single cell required modest computing resources – 1 core-day of an Intel E5520 
CPU, capable of 3.3×1015 double-precision floating-point operations during the computation. Sampling the 
organism’s behavior required 128 simulations. Nevertheless, we anticipate that exascale computing resources 
will be required to use more comprehensive and more accurate whole-cell models to personalize medicine and 
engineer bacteria. 

Potential impacts of whole-cell modeling 
Whole-cell modeling has the potential to make large impacts on both precision medicine and bioengineering: 

• Medical applications of models of human cells: Human models could revolutionize medicine. For 
example, in the future, we envision that computational oncologists will use accurate, personalized whole-
cell models of tumors, parameterized by each tumor’s genetic variations, to find the optimal combination 
and dosage of drugs to treat each patient’s cancer. Similar approaches could be used to personalize 
therapy for any patient with any disease who is being evaluated for any drug. 

• Industrial applications of genetically optimized bacteria: Many economically transformative genetic 
engineering applications of bacteria are currently under investigation [Khalil 2010], including drug 
production [Ajikumar 2010], renewable fuel synthesis, generating energy from sunlight, and hazardous 
waste disposal [Lee 2012]. However, these efforts are hindered by challenges in predicting and testing 
the benefits of possible genetic modifications. This process could be improved by (1) using whole-cell 
models to rationally design genomes by optimizing in silico phenotypes and (2) using genome editing 
methods such as CRISPR [Jinek 2012] or genome synthesis methods [Gibson 2008] to implement 
designer genomes. 

Computational landscape of whole-cell modeling in 2025 
We estimate the computational costs of two representative studies that we aim to support in 2025 (Table 1): 

1. A clinical trial of 100 cancer patients with drug regimens determined by personalized whole-cell models. 
2. A study to engineer a bacterium to cost-effectively produce a complex drug. 

As a first example, we consider the cost of using whole-cell models to select the optimal drugs for 100 patients. 
Compared to our M. genitalium model, we anticipate that human models will represent 400 times more proteins 
and reactions. To use whole-cell models to screen drugs, we anticipate simulating 100 drug combinations and 
dosages per patient, and simulating each drug combination 1,000 times to accurately model its behavior. 
Based on the ≈3×1015 potential floating point operation cost of our M. genitalium model simulations, we 
anticipate that this study will require resources providing ≈1025 floating point operations, or about 0.3 sustained 
EXAFLOPS for roughly a year. 
We anticipate that bacterial engineering studies will focus on more complex bacteria, such as Escherichia coli, 
that have 10 times more genes than M. genitalium. To predictably design bacteria, we also anticipate that 
whole-cell models will need to represent molecular processes with 10 times greater detail. AA challenging 
aspect of designing bacterial genomes will be exploring the extremely high dimensional space of possible 
variants. Thus, we anticipate that 106 model runs, each replicated 100 times to accurately sample their 
behavior, will be required to explore and optimize bacterial genomes. Based on the ≈3×1015 potential floating 
point operation cost of our M. genitalium model, we anticipate that whole-cell model-driven bioengineering will 
require resources with ≈1025 floating point operations, also roughly 0.3 sustained EXAFLOPS for a few years. 
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In summary, we anticipate that future applications that employ whole-cell modeling will require significant 
computational resources, and that this will primarily be driven by the large numbers of simulations required to 
optimize the large spaces of possible drug combinations and genome sequences. 
Table 1. Anticipated computational costs of future whole-cell modeling. 

 Application 

Computational component Clinical trial of optimization of cancer drug 
treatment 

Design a genetically optimized bacterium to 
solve a bioengineering problem 

Computational cost function 
(current cost of simulating one bacterium life-
cycle) x (factor increase in types of proteins) x 
(possible drug combinations and dosages) x 
(statistical replications) x (100 patients) 

(current cost of simulating one bacterium life-
cycle) x (factor increase in types of proteins) x 
(increased detail of bacterial model) x (possible 
DNA modifications) x (statistical replications) 

Computational cost values (3×1015) x (4×102) x (1×103) x (1×103) x (1×102) (3×1015) x (1×101) x (1×101) x (1×106) x (1×102) 
Computational cost 
(floating-point operations) 1.2×1025 3×1025 

Duration of study (days) 400 1000 
Sustained compute for study 
(EXAFLOPS) 0.3 0.3 

Whole-cell modeling roadmap 
The whole-cell modeling field is developing technologies to enable these applications, including: 

1. Tools to collect and organize the experimental data needed to train whole-cell models; 
2. Tools to design whole-cell models, including methods to partition reactions into sub-models; 
3. Tools to identify the parameters of high-dimensional models, including tools that utilize model reduction 

and distributed optimization 
4. Parallel algorithms for simulating multi-algorithm models with high numerical accuracy and performance; 
5. Tools to store, visualize, and analyze of high-dimensional simulation results; and 
6. Standard formats to represent whole-cell models and their simulations. 

We have developed software to simulate multi-algorithm models [Karr 2012], WholeCellKB [Karr 2013] to 
organize experimental training data, WholeCellSimDB [Karr 2014] to store simulation results, and 
WholeCellViz [Lee 2013] to visualize simulations results. Other groups created the SBML and SED-ML 
standard representation formats, which represent systems models and their simulations, respectively. 
We anticipate that the field will realize these tools in the next five years, and begin to pursue the described 
medical and bioengineering applications in 5-10 years. 

Summary 
In summary, we anticipate that applications which employ whole-cell modeling will require increasing 
computational resources as the field advances the technologies for building and simulating whole-cell models.  
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